EXCITATION AND DEACTIVATION OF MOLECULAR
ROTATION IN ATOM ~ MOLECULE COLLISIONS

A. V. Ivanov, B. V. Kuksenko, UDC 539.196+533.5
and S. A, Losev

The article deals with the processes of the excitation and deactivation of rotation in diatomic mole-
cules which constitute a small impurity in a monatomic gas.

In some types of flow in a rarefied gas it becomes significant to consider the reduction in the rate of
energy exchange between the translational and rotational degrees of freedom of the molecules. The infor-
mation available today is not yet sufficient for a satisfactory solution of this problem. It is known only
[1, 2] that in most cases the characteristic time required for the process of establishing equilibrium with

- respect to the rotational degrees of freedom of the molecules is of the same order of magnitude as, or
somewhat greater than, the time required for establishment of a Maxwellian distribution of molecular ve-
locities in the gas.

1. The collision of a molecule with an atom will be considered within the framework of classical
mechanics. Atoms, either in molecules or as free atoms, will be represented by mass points. We shall
confine our investigation to the case in which the relative-velocity vectors lie in the plane which contains
all three atoms, i.e., confine it to plane problems. Initially the potential of the forces of interaction be-
tween atoms within a molecule was specified as in the Morse anharmonic oscillator; however, calculations
showed that,under the circumstances we are considering, the molecule is satisfactorily described by the
rigid-rotator model. The potential about which the least is known is that of the forces of interaction be-
tween molecules; as a rough approximation, we assume that the centers of the repulsion forces coincide
with the nuclei of the atoms. The attraction forces were left out of consideration in the problem of indi~
vidual collisions, their role being taken approximately into account when we determined the results of
many collisions by using the increase in the relative velocity of the colliding particles, which is deter-
mined from the depth of the potential well.

A diagram representing the collision and indicating the notation used is shown in Fig. 1. The Ham-
iltonian H of the atom-molecule system in a fixed system of coordinates can be written in the form
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(m* = m1/2 = 7)’&2/2, M=m + mz)

H =

Here the symbol P represents generalized impulses; X, y, £, and » are Cartesian coordinates. The

first term of the sum is due to the motion of the center of gravity of the molecule, the second term is due

to the motion of the impinging atom, the third term represents the poten~

tial energy of intermolecular interaction, the next two terms are due to
€y the rotation of the molecule about its center of gravity and to the vibra-
4 tion of the nuclei in the molecule, and the last term represents the poten-
tial energy of interaction between these nuclei. In the case of a rigid ro~
tator the last two terms are constant, and r=re (where re is the equilib-
rium distance between the nuclei within the molecule). By hypothesis,

Fig. 1

V (RyRy) = Vo exp (—aRy) + Vo exp (—aky) (1.2)
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ﬂf[@(e\/)\/ The Hamiltonian was solved numerically for parameters corresponding to
2051 A a collision between A and O,. Experiments on the elastic scattering of molecular
W ; ) heams [3] yielded average values of the interaction potential for this pair, where
J — the average was taken over all possible orientations of the molecule. The pa-
v rameters V, and @ in formula (2) were calculated on the basis of this potential,
_M;y : ; bj using the proocedure proposed in [4]. The results found were that V,=32,250 eV
and @ =4.12 A1
Fig- 2 The calculation of each trajectory began at distance £ —x=5rg. In our cal-
culations we varied the values of: y, the angle of orientation of the molecular
61 e eV) /) % axis with respect to the relative-velocity vector; b=|y—7|, the target distance;
205 ? the initial velocity of the impinging atom (i.e., the energy of relative motion, €¢);
! 7 P and Py, the initial rotational angular momentum of the molecule. In each variant
y /ﬁ of the collision the increment of the rotational energy of the molecule, As, (¢, =
7 Py 2m*r2), was kept fixed.
B ey ;*(e\;} The quantities €4 and &, will be expressed in electron-volts (eV), the tar-
. get-distance parameter b in units equal to rg (re=1.207 ), and p, the rotational
Fig. 3 momentum of the Oy molecule, in units equal to h/2x (p= 21rh‘1P¢, where h is
Planck's constant).
2
" 5r(eV) Figures 2-4 show some of the calculation results, averaged over the vari-~
7o\ g /_ ous initial orientations:
\ ;
4128 \ By (b0 P) = 7 | Ay (0,80 2, W) 2 (1.3)
Y 2L ’
Yo W W & Figure 2 gives examples showing how Ae . varies as a function of the tar-

get-distance parameter b for combinations 1-4 of p and & values; the specific
values of p and £ were those shown in parentheses helow:

1(p=0,¢=D08184), 2(p =0, & = 0.102),
3(p|=21, e =0.8184),4(p|=21,¢ = 0.102)

It can be seen that in cases with no initial rotation (p=0), the rotation is most effectively excited
when b= 1. \

The variation of Ag .. as a function of £, the energy of the impinging atoms, is shown in Fig. 3. Here
curves 1,..., 6 correspond to the following combinations of p and b values:

I(p=0b=0), 2(p=0 5=12, 3(p=0 b=20
4(p|=21, b=0), 5(pi=21,5=12),6(p|=21,b=20)

For p=0 the function Ag.(g4) is almost linear. In this case, which is the simplest of all, the nu-
merical solution described here agrees qualitatively with the results obtained by Parker [5], who used an
analytical method. Implicit in {5] was the assumption that the configuration of the colliding particles at
the instant of their nearest approach is independent of the initial orientation of the molecules.

This assumption makes it possible to obtain an analytical average over the values of the parameter
3 in an expression of the type (3). The calculation results show that this assumption is acceptable when
p=0. When p= 0, the picture becomes more complicated, so that extending Parker’s method to cases of
this type would yield incorrect results. In Fig. 4 we show, as an example, the variation of Aey as a func~
tion of |p| when b=0 and £¢=10.102.

Tt can be seen that for some value of p the rotational energy remains constant (Ag,=0). This hap-
pens when &% is approximately one-fifth of the energy of relative motion of the colliding particles. This
result is confirmed by all the calculations carried out for 0.1=¢;=1.64 and 0 =p=61.

For higher initial values of rotational energy we observe a deactivation of the rotational levels, with
a conversion of part of the initial rotational energy of the molecule to translational energy. For the case
p= 0, applying Parker's method does not give us the deactivation effect.
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TABLE 1

T, °K p=0 5 1 l 21 ' 3 l M 61
300 0.38 —0.18 —0.32
500 0.74
1000 1.80 1.44 —0.55 —1.43
1500 3.05 2.56 1.26 | —0.37 —1.27 —2.16 —2.16
2000 4. 44 3.82 2.14 | —0.02 —1.25 —2.44 —3.64
3000 7.50 6.63 4.16 0.86 —0.95 —2.60 —~5.20
4000 10.90 9.75 6.44 1.96 —0.33 —2.35 —6.18
6000 18.40 16.60 11.50 4.57 0 —1.36 —17.04
8000 26.80 . 24.40 17.30 7.63 3.46 0.24 —6.94
10000 35.60 32.40 23,30 10.90 5.81 2.12 —6.18
12000 44.20 40.40 29.30 14.10 8.22 4,18 —5.08

2. The above results, obtained for the solution of the dynamic problem of collisions, may be used,
in principle, when we consider the kinetics of the rotational-energy distribution function for a rigid rota-
tor and find the appropriate relaxation equation. The solution of such a kinetic problem is very compli-
cated and laborious and was not included among the purposes of this study. In the present article we de-
scribe estimates for the velocity of rotational relaxation and consider qualitatively how it varies as a func-
tion of such physical factors as the direction of the process, the initial energy state of the rotational and
translational motions, and the attraction forces acting at long distances.

In the general case the rotational-relaxation time is comparable to the time required for the estab-
lishment of equilibrium with respect to the translational degrees of freedom [2, 5], and therefore these
processes should be considered jointly, which simplifies the problem to a substantial extent. However, if
we assume that the diatomic O, molecules constitute only a small impurity in the basic monatomic com~
ponent A, whose translational degrees of freedom have an equilibrium Maxwell distribution (thermostatic
condition), then the relaxation of the rotational energy of the rigid rotator can be considered separately.
This is the case we will consider in the rest of this article.

In order to estimate the rotational-relaxation time in the O;—A mixture, we shall carry out a static-
averaging process on the result of the solution of the dynamic problem of collisions involving the variation
of Agp with b, ¢, and p. We assume that the distribution function with respect to the rotational degrees
of freedom is Maxwellian. In that case the frequency of collisions (sec™!) of 0, molecules with A atoms
for relative velocities 1y1ng between v and v+dv (cm/sec), target distances lying between b and b+db (cm),
and azimuth angles lying between ¥ and x+dy will be

ﬂ/ .
20{A} (g )" exp - v7bdbdudy (2.1)
o mums _ _15 SI8
b= fme s A= 1384070 =

Here i is the reduced mass, k is the Boltzmann constant, T is the temperature (°K), and n {A} is the
density of A atoms (cm™). For the average change per unit time in the rotational energy of molecules
with a given initial value py, in 2 calculation involving one molecule for one collision, we have

dE, (T, Py) T
dt = 2( PETYg ) S
L]

When we integrated in (2.2), we used for Ag.. (b, €, pg) an analytic approximation to the results of
the solution of all variants of the dynamic problem. Since we disregarded the variation of Ae, as a func~
tion of ¥, the calculation of the integral with respect to x is trivial. The integral with respect to b was ob-
tained apalytically, and the integral with respect to g4 (i.e., with respect to v) was obtained numerically.
The values of dEy/dt (10 eV - ecm?®/sec) for various thermostat temperatures and for an initial rotational
momentum p, aré shown in Table 1. It should be noted that in (2.2) the distribution function of the mole-
cules with respect to p is *monochromatic,” f (p) =8 (p-py), i.e., the rotational temperature is T.=0.

o0

J e 2kT
0

i At [b, &, (v), po] exp —po v3bdbdvdy, (2.2)
0

We may mention in passing that when we have the relation poz =0.22 T there is no exchange of en-
ergy at all between rotational and translational degrees of freedom. In this case, relaxation begins with a
redistribution of rotational energy with respect to direction, until a Boltzmann equilibrium distribution is
established.
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An approximation of the calculation results for p;=0 (the first column
of dEy/dt values in Table 1) yields

dE_(T)
dt|T,

w7

o, =3.6-10%n{a }T‘-3<i) (2.3)

sec

07

The effect of long-distance attraction forces can be taken into consider-
ation by increasing the relative velocity of the colliding particles. This should
increase the dEp/dt values obtained here. An analytic solution of the problem

X N\
v for py=0, carried out for the A—O, system, like Parker's method [5], yields a
= correction for attraction forces in the form of a factor g by which the right
A \?Q——’— side of (2.3) should be multiplied;
w” o AN 2 3, * \1f, 2 %
- N ot S ()
LN #
Uere p m‘ 1 Here T* is the depth of the potential well; for an A—Q, system, T*=
Fig. 5 101°K. The value of the factor for high temperatures is close to unity; for ex-

ample, when T=10,000°K, we have g=1.337. As the temperature is reduced,
the value of g increases markedly. Thus, g=1.91 for 2,000°K, and g=4.5 for
T=300°K.

The result (2.3). enables us to estimate T (the rotational-relaxation time for O, present as a small
impurity in A under thermostatic conditions) at high temperatures. We can determine 7 by using the
equation

v = E,°(T)/ (dE, | dt)r . (2.5)

where E5. (T) =kT is the equilibrium rotational energy per molecule, and the derivative is the rate of in-
crease of this energy for an initially nonrotating molecule. If the rotational energy satisfies a relaxation
equation of the form

dE, [ dt = |E° (T) — E, ()l (2.6)

then 7 has the usual meaning. From (2.3), (2.5), and the equation of state of the gas under thermostatic
conditions, we find

p = 4.25.1071 197 (2.7
where p is the pressure (atm) and T is measured in seconds.

The quantity z =7/7,, where T, is the average time between collisions, gives us an estimate of the
number of collisions leading to the establishment of equilibrium with respect to the rotational degrees of
freedom. For a Maxwellian distribution of velocities in the case of A—0O, collisions [6] we have

7, = 9.25-10-5T% / n { 4 }o? (2.8)

where ¢ is the gas-kinetic diameter of the collision (cm). The variation of the square of this quantity as a
function of temperature, according to measurements made in experiments on the scattering of a molecular
beam [3] for temperatures of 2,000°K= T = 10,000°K, admits of an approximation of the form

o (T) = 3.76-10"57-02  (cm?) (2.9)
Comparing (2.7)-(2.9), we find that z is practically independent of T and has a value of about 14.

The expression (2.4) shows that even when we take attraction forces into consideration, our conclu-
sion remains true at least for high temperatures. The estimate we have obtained for the rotational relax-
ation time agrees with the results of [5].

If the initial rotational energy cannot be considered small (7.],_, = 0)., our calculations yield a sub-
stantially different result. To make the following estimates easier to visualize, we shall make one more
assurption. Suppose that in the process of rotational relaxation there exists a Boltzmann distribution with
respect to rotational levels, f(Ey) ~exp{—Ep/kTy}, with a rotational temperature Ty different from the
thermostat temperature T. The possibility of realizing such a process was shown in [7] for the case in
which the average energy added by one collision to the rotation of the molecule is small in comparison with
the kinetic energy of relative motion.
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This will be true when a heavy rigid rotator collides with light atoms (for example, in Bry-He col-
lisions). In the case we have considered in this article, A and O, have comparable masses, so that this
agsumption is not strictly true. However, numerical calculations show (Fig. 3 and Fig. 4) that for 0.4<
£¢< 1.6 (which corresponds to 2,500°K < T < 15,000°K) the Agy. value averaged with respect to ¢ is less by a
factor of 3-5 than ¢4, the energy of relative motion. This gives reason to hope that the assuraption of a
Boltzmann distribution for the rotational energy of the O, molecule will yield a satisfactory qualitative de-
scription of the process of rotational relaxation.

We integrate dE/dt in the expression (2.2) with respect to py, with a Boltzmann weighting factor, by
numerical methods, using values from Table 1:

dE(T.T) (¢ —¢ - € dE [T, pr (e,)] —e
—L(—it—r:{s °XD 7 da,} S g OXD - dey .10
0 o

By approximating the integration in (2.10), we obtain

dE (T,T,)  dE,(T,0) T \03
T T a [1—(‘%)] (2.11)

where the first factor is given by the expression (2.3). For Ty=0 the value of dEy/dt is found to be the
same as before. In the equilibrium condition T=T, and naturally we also have dEy (T, Ty)/dt=0. In the
general case the rate of excitation or deactivation depends both on the temperature of the translational
degrees of freedom and on the rotational temperature.

3. As an example of the application of formula (2.11), we consider the distribution of the rotational
temperature of O, molecules along the axis of a jet emerging into a vacuum. At a sufficiently long dis-
tance from the source, i.e., at a point where the density of the gas becomes small, we can observe a devi-
ation of the rotational temperature from the temperature of the translational degrees of freedom. A little
further downstream, there is complete freezing first of the rotational temperature and then of the trans-
lational temperature as well [8]. The discussion of this problem in [9] made use of a relaxation equation
of the form (2.6).

Suppose that the jet emerges from a reservoir through an orifice of diameter d. The main compo-
nent of the jet is argon, which determines its gas-dynamic and thermodynamic properties, in particular
the adiabatic exponent 'y=5/3. Let the distance x be measured from the critical cross section, which is sit-
uated at the orifice; then for the distribution of the number M along the axis of the jet we can take an ap-
proximate function similar to the one proposed by M. Ladyzhenskii:

M = 3.64 (z/ dy -1 3.1)

For a value of Ty characterizing a2 small admixture of molecular oxygen, Eq. (2.11) can be reduced
to the form

d Tr 0.4 1 . -0.3 Tr 0.3 .
Tz(‘TT>=_‘“_—‘_'KoM(1+1/3MZ>2 K““TM) *( To) 1 ©.2)

Here T, is the stagnation temperature and K, is the Knudsen number, which is determined from the
free path length of the molecules in the reservoir and the diameter d of the orifice. If we assume that Ty
and T are in equilibrium everywhere inside the reservoir up to the critical cross section, we obtain the
initial condition

(Ty/ To) lxm0="12/4 (3.3)

The results of numerical calculations using Eq. (3.2), where M is given by Eq. (3.1) with the initial
condition (3.3) for various values of the parameter K;, are shown by solid curves in Fig. 5a. The dashed
curve shows the distribution of the translational temperature. It can be seen that the variation of the ro-
tational temperature along the axis of the jet has a nonequilibrium character. As the jet moves away from
the source, the temperature deviates more and more from the equilibrium value, and at a sufficiently dis-
tant point it freezes. The degree of nonequilibrium and the level of the frozen rotational temperature in-
crease as K, increases.

Similar calculations were carried out for the case in which the correction for long-distance attrac-
tion forces between the molecules was taken into consideration. The right side of Eq. (3.2) was multiplied
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by the factor g (formula (2.4)). This factor introduces a variation with the absolute temperature value.
Figure 5b shows the results of calculations using K,=107%. Curve 1, calculated without taking the attrac-
tion forces into consideration, is independent of Ty; curve 2 was calculated with the attraction forces taken
into consideration for Ty=10,000°K, and curve 3 for T;=300°K. It can be clearly seen that in the high-
temperature case the attraction forces have little effect on the final result. On the other hand, for Ty=
300°K the effect of the attraction forces is that the T, curve is practically identical with the T curve up to
x/d=100.

Marrone [10] found experimentally that for K~ 10~% and T;=300°K, in a jet of pure nitrogen, freezing

of T, takes place when x/d ~20. Curve 3 cannot be expected to be in good quantitative agreement with real
flow, since the attraction forces were only qualitatively taken into consideration. It should be pointed out
that in Marrone's experiments [10] for identical values of x/d the temperature was higher, because of dif-
ferences in the adiabatic exponent, than in the calculations, and therefore the effect of the attraction forces
is less pronounced.

10.
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